Predicting software defects in varying development lifecycles using Bayesian nets
نویسندگان
چکیده
منابع مشابه
Predicting software defects in varying development lifecycles using Bayesian nets
An important decision in software projects is when to stop testing. Decision support tools for this have been built using causal models represented by Bayesian Networks (BNs), incorporating empirical data and expert judgement. Previously, this required a custom BN for each development lifecycle. We describe a more general approach that allows causal models to be applied to any lifecycle. The ap...
متن کاملPredicting Software Quality using Bayesian Belief Networks
In the absence of an agreed measure of software quality the density of defects has been a very commonly used surrogate measure. As a result there have been numerous attempts to build models for predicting the number of residual software defects. Typically, the key variables in these models are either size and complexity metrics or measures arising from testing information. There are, however, s...
متن کاملPredicting Defects in Software Using Grammar-Guided Genetic Programming
The knowledge of the software quality can allow an organization to allocate the needed resources for the code maintenance. Maintaining the software is considered as a high cost factor for most organizations. Consequently, there is need to assess software modules in respect of defects that will arise. Addressing the prediction of software defects by means of computational intelligence has only r...
متن کاملImproved Software Project Risk Assessment Using Bayesian Nets
Empirical software engineering models typically focus on predicting development effort or software quality but not both. Using Bayesian Nets (BNs) as causal models, researchers have recently attempted to build models that incorporate relationships between functionality, effort, software quality, and various process variables. This thesis analyses such models and, as part of a new validation stu...
متن کاملPredicting waste generation using Bayesian model averaging
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Software Technology
سال: 2007
ISSN: 0950-5849
DOI: 10.1016/j.infsof.2006.09.001